All Issue

2025 Vol.26, Issue 6 Preview Page
1 June 2025. pp. 25-34
Abstract
References
1

Aaqib, M., Park, D., Adeel, M. B., Hashash, Y. M. A. and Ilhan, O. (2021), Simulation-based site amplification model for shallow bedrock sites in Korea, Earthquake Spectra, Vol. 37, No. 3, pp. 1900~1930.

10.1177/8755293020981984
2

Anthymidis, M., Theodoulidis, N., Savvaidis, A. and Papazachos, C. (2012), Constraining site response and shallow geophysical structure by ambient noise measurements and 1D numerical simulations: the case of Grevena town (N. Greece), Bulletin of Earthquake Engineering, Vol. 10, No. 6, pp. 1685~1716.

10.1007/s10518-012-9378-3
3

Dung, N. T., Chung, S. G., Kim, S. R. and Beak, S. H. (2011), Applicability of the SPT-based methods for estimating toe bearing capacity of driven PHC piles in the thick deltaic deposits, KSCE Journal of Civil Engineering, Vol. 15, No. 6, pp. 1023~1031.

10.1007/s12205-011-0801-0
4

Heo, G. S. and Kwak, D. Y. (2022), VS prediction model using SPT-N values and soil layers in South Korea, Journal of the Korean Geotechnical Society, Vol. 38, No. 8, pp. 53~66 (In Korean).

5

ISSMGE (1999), Manual for Zonation on Seismic Geotechnical Hazards (Revised Version). Technical Committee on Earthquake Geotechnical Engineering (TC4) of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), The Japanese Geotechnical Society, pp. 5~10.

6

Kienzle, A., Hannich, D., Wirth, W., Ehret, D., Rohn, J., Ciugudean, V. and Czurda, K. (2006), A GIS-based study of earthquake hazard as a tool for the microzonation of Bucharest, Engineering Geology, Vol. 87, No. 1~2, pp. 13~32.

10.1016/j.enggeo.2006.05.008
7

Kim, H. S. and Ji, Y. (2022), Three-dimensional geotechnical-layer mapping in Seoul using borehole database and deep neural network-based model, Engineering Geology, Vol. 297, p. 106489.

10.1016/j.enggeo.2021.106489
8

Kim, H. S. and Kim, H. K. (2019), Optimizing site-specific geostatistics to improve geotechnical spatial information in Seoul, South Korea, Arabian Journal of Geosciences, Vol. 12, No. 4, p. 104.

10.1007/s12517-018-4171-5
9

Kim, H. S., Sun, C. G., Kim, M., Cho, H. I. and Lee, M. G. (2020), GIS~Based Optimum Geospatial Characterization for Seismic Site Effect Assessment in an Inland Urban Area, South Korea, Applied Sciences, Vol. 10, No. 21, p. 7443.

10.3390/app10217443
10

Kim, Y. Y., Lee, K. K. and Sung, I. (2001), Urbanization and the groundwater budget, metropolitan Seoul area, Korea, Hydrogeology Journal, Vol. 9, No. 4, pp. 401~412.

10.1007/s100400100139
11

Lee, J., Park, H. and Oh, H. (2020), A Study on Microzonation of Sejong City Area by Site Amplification Caused by Gyeongju Type Earthquake, Journal of the Korean Society of Hazard Mitigation, Vol. 20, No. 6, pp. 221~228 (In Korean).

10.9798/KOSHAM.2020.20.6.221
12

Lee, J. Y., Kwon, K. D. and Raza, M. (2018), Current water uses, related risks, and management options for Seoul megacity, Korea, Environmental Earth Sciences, Vol. 77, No. 14, pp. 1~20.

10.1007/s12665-017-7192-6
13

Lee, S. and Oh, S. (2022), A comprehensive seismic risk assessment map of South Korea based on seismic, geotechnical, and social vulnerability, Environmental Earth Sciences, Vol. 81, No. 1, p. 33.

10.1007/s12665-021-10153-3
14

Lee, Y., Lee, Y. G. and Park, D. (2024), Geotechnical data based seismic microzonation in Seoul using region~specific and code~based site amplification models, Bulletin of Earthquake Engineering, Vol. 22, No. 5, pp. 2375~2403.

10.1007/s10518-023-01851-3
15

Manandhar, S., Cho, H. I. and Kim, D. S. (2018), Site Classification System and Site Coefficients for Shallow Bedrock Sites in Korea, Journal of Earthquake Engineering, Vol. 22, No. 7, pp. 1259~1284.

10.1080/13632469.2016.1277570
16

Mihalić, S., Oštrić, M. and Krkač, M. (2011), Seismic microzonation: A review of principles and practice, Geofizika, Vol. 28, No. 1, pp. 5~20.

17

MOLIT (2019), National Geotechnical Information Database System. Ministry of Land, Infrastructure and Transportation (MOLIT). http://www.geoinfo.or.kr.

18

MOLIT (2018), Korean Design Standard (KDS 17 10 00:2018). Ministry of Land, Infrastructure and Transportation (MOLIT), Sejong, pp. 1~5., Korea (In Korean).

19

Oliveira, L., Gomes, R. C. and Teves-Costa, P. (2023), Contribution to the seismic microzonation of Lisbon based on the integration of geological, geophysical, and geotechnical data, Soil Dynamics and Earthquake Engineering, Vol. 171, p. 107965.

10.1016/j.soildyn.2023.107965
20

Oliveira, L., Teves-Costa, P., Pinto, C., Gomes, R. C., Almeida, I. M., Ferreira, C., Pereira, T. and Sotto-Mayor, M. (2020), Seismic microzonation based on large geotechnical database: Application to Lisbon, Engineering Geology, Vol. 265, p. 105417.

10.1016/j.enggeo.2019.105417
21

Pagliaroli, A. (2018), Key issues in seismic microzonation studies: lessons from recent experiences in Italy, Rivista Italiana di Geotecnica, Vol. 1, No. 1, pp. 5~48.

22

Papadimitriou, A. G., Antoniou, A. A., Bouckovalas, G. D. and Marinos, P. G. (2008), Methodology for automated GIS-aided seismic microzonation studies, Computers and Geotechnics, Vol. 35, No. 4, pp. 505~523.

10.1016/j.compgeo.2007.10.001
23

Park, K. H., Han, J. T. and Yoon, Y. (2021), A study on the automatic digital DB of boring log using AI, Journal of the Korean Geotechnical Society, Vol. 37, No. 11, pp. 119~129 (In Korean).

24

Phoon, K. K. and Kulhawy, F. H. (1999), Characterization of geotechnical variability, Canadian geotechnical journal, Vol. 36, No. 4, pp. 612~624.

10.1139/t99-038
25

Song, S., Hwang, B. and Cho, W. (2021), Comparison of Liquefaction Probability Map Regarding with Geotechnical Information and Spatial Interpolation Target, Journal of the Korean Geo-Environmental Society, Vol. 22, No. 11, pp. 5~13 (In Korean).

26

Stanko, D., Korbar, T. and Markušić, S. (2023), Evaluation of the Local Site Effects and Their Implication to the Seismic Risk of the UNESCO World Heritage Site Old City of Dubrovnik (Croatia), Journal of Earthquake Engineering, Vol. 28, No. 3, pp. 731~759.

10.1080/13632469.2023.2220029
27

Sun, C. G., Cho, C. S., Son, M. and Shin, J. S. (2013), Correlations between shear wave velocity and In-situ penetration test results for Korean soil deposits, Pure and Applied Geophysics, Vol. 170, No. 3, pp. 271-281.

10.1007/s00024-012-0516-2
28

Sun, C. G., Chung, C. K. and Kim, D. S. (2007), Determination of mean shear wave velocity to the depth of 30m based on shallow shear wave velocity profile, Journal of the Earthquake Engineering Society of Korea, Vol. 11, No. 1, pp. 45~57 (In Korean).

10.5000/EESK.2007.11.1.045
29

Sun, C. G. and Kim, H. S. (2016), Geostatistical assessment for the regional zonation of seismic site effects in a coastal urban area using a GIS framework, Bulletin of Earthquake Engineering, Vol. 14, No. 8, pp. 2161~2183.

10.1007/s10518-016-9908-5
30

Sun, C. G., Kim, H. S., Chung, C. K. and Chi, H. C. (2014), Spatial zonations for regional assessment of seismic site effects in the Seoul metropolitan area, Soil Dynamics and Earthquake Engineering, Vol. 56, pp. 44~56.

10.1016/j.soildyn.2013.10.003
31

Yun, H. S., Lee, J. Y., Yang, D. Y. and Hong, S. S. (2007), Areal distribution ratio of rock type with geologic ages in the Gyeonggi-Seoul-Incheon areas, The Journal of the Petrological Society of Korea, Vol. 16, No. 4, pp. 208~216 (In Korean).

Information
  • Publisher :Korean Geo-Environmental Society
  • Publisher(Ko) :한국지반환경공학회
  • Journal Title :Journal of the Korean Geo-Environmental Society
  • Journal Title(Ko) :한국지반환경공학회 논문집
  • Volume : 26
  • No :6
  • Pages :25-34
  • Received Date : 2025-04-21
  • Revised Date : 2025-04-23
  • Accepted Date : 2025-05-08